STRUCTURE OF C16-TERPENES FROM ACROSTALAGMUS NRRL-3481

Michio Sato, Tsuen-Ih Ruo, Teruo Hayashi, and Hiroshi Kakisawa (Department of Chemistry, Tokyo Kyoiku University, Otsuka, Tokyo)

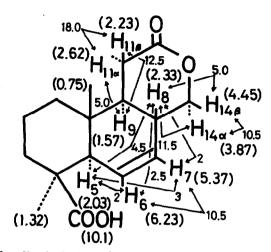
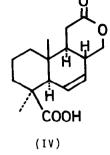
Takeo Miyaki, Haruaki Yamamoto, and Keiichi Fujisawa (Bristol-Banyu Research Institute, Ltd., Shimomeguro, Tokyo, Japan)

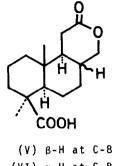
(Received in Japan 27 April 1974; received in UK for publication 13 May 1974)

The lactone (I) obtained from the culture of <u>Acrostalagmus</u> NRRL-3481¹) has been found to have a strong inhibitory activity on the growth of an <u>Avena</u> <u>coleoptile</u> section^{2,3)}. A previous report from these laboratories described that this C_{16} -terpenoid lactone (I) is biosynthesized from a diterpenoid precursor with loss of four carbon atoms²). In the course of this biosynthetic investigation, we find that strain of <u>Acrostalagmus</u> NRRL-3481 produces three new C_{16} -terpenoids (IV, VIII, X), some of which are assumed to be biosynthetic intermediates for the lactone (I).

Acrostalidic acid, mp 210-211°, M^+ 278.150 (calcd. 278.152), $C_{16}H_{22}O_4$, shows ir absorptions at 3300-2600, 3030, 1740, 1690cm⁻¹ and nmr signals as shown in Fig.1. These spectral properties and the co-occurence of this metabolite with (I) in the culture suggested the structure (IV) for the acid. The high field methyl signal at δ 0.75ppm is assigned to the C-10 methyl group situated on cis 1,3-diaxial relationship with the C-4 carboxyl group. The stereochemistry of B/C ring junctions is assigned as trans from the two diaxial coupling constants, J_{8-14} =11.5 and J_{9-11} =12.5Hz. This structure is confirmed by decoupling experiment on the nmr. Irradiation of H₈ brings signal changes of H₆ and H₇ from ddd to dd, together with from dd of H_{14 $\alpha}} and H_{14<math>\beta$} to d. Two allyl coupling constants, J_{5-7} =3 and J_{6-8} =2.5, and a very large homoallyl coupling constant, J_{5-8} =4.5, reveal that the two protons, H₅ and H₈, are oriented</sub>

2183


Fig. 1. Chemical shifts(in parenthesis) and coupling constants in the nmr spectrum of acrostalidic acid.

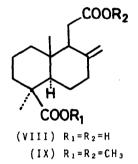
perpendicular to the plane of an ethylene bond. This relationship shows trans A/B ring junctions. As a corroboration of the skeleton of the acid (IV), ms fragmentations of dihydro acid (V) are very similar to those of (VI), which is obtained from a lactone (III) by catalytic hydrogenation. The lactone (III), prepared from lactol (II) by sodium borohydride reduction, is found to inhibit remarkablly the plant growth at the concentaration of lppm⁶.

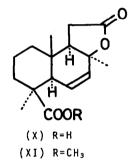
Acrostalic acid, mp 219-220°, M^+ 280.169 (calcd. 280.167), $C_{16}H_{24}O_4$, shows ir absorption at 3300-2600, 1700, 1690, 890cm⁻¹, and nmr peaks at 0.66(3H,s), 1.23(3H,s) 4.55(1H,br.s), 4.74(1H,br.s). These spectral properties suggest the structure (VIII) for this acid. The ms spectrum supported the structure. In agreement with the fragmentation patterns⁷⁾ of bicyclic diterpenes with C-4 carboxyl and C-8 terminal methylene groups, peaks at m/e 167(60%), 139(33%), and 121(100%) were observed in ms of (VIII). Direct comparisons of the dimethyl ester (IX) with the authentic compound⁴⁾, which had been synthesized from podocarpic acid, confirmed the structure including the absolute stereochemistry.

Isoacrostalidic acid, mp 204-206°, M⁺ 278.152 (calcd. 258.152), $C_{16}H_{22}O_4$, ir 3300-2600, 3050, 1745, 1690cm⁻¹, δ 6.45(1H,dd,J=10.5, 2), 5.85(1H,dd,J=10.5, 3), 1.40, 1.34, 0.73(each s, 3H), has been deduced to have the structure (X) from the spectral similarities to acrostalidic acid(IV). The major differences are seen in ir and nmr; the isomer has a γ -lactone band at 1745cm⁻¹ and a

(VI) α -H at C-8

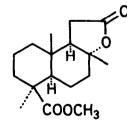
соон OH Ĥ соон (VII)

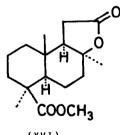

H


(III) R≃H

0

- 0


(I) R≈CH₃ (II) R≈0H



(XII) R₁=R₂=H (XIII) R₁=R₂=CH₃ (XIV) R₁=CH₃, R₂=H

(XV)

(XVI)

methyl singlet at δ 1.40ppm instead of δ -lactone band at 1740cm⁻¹ and oxomethyl signals around at δ 4.0ppm of acrostalidic acid. Catalytic hydrogenation of the lactonic ester (XI) afforded a saturated ester-acid (XIV) with hydrogenolytic cleavage of lactone ring, which dictates the positional correlation between γ -lactone group and ethylenic double bond. The carbon skeleton and stereochemistry around the A/B rings are confirmed from the fact that catalytic hydrogenation of the lactone (III) followed by methylation with diazomethane and partial hydrolysis with potassium hydroxide afforded the same ester-acid (XIV) that obtained from isoacrostalidic acid. The stereochemistry of the juctions of B-ring/lactone-group was assigned as cis from ir absorption 1745cm⁻¹. On brief acid treatment, monomethyl ester of acrostalic acid (VIII, R₁=CH₃, R₂=H) showed transiently an ir absorption band at 1770cm⁻¹, which showed a formation of trans lactone (XV). This trans lactone was readily changed to cis lactone (XVI), which showed a γ -lactone absorption at 1745cm⁻¹ in accordance with the ir absorption of isoacrostalidic acid.

From the structures of these metabolites and the biosynthetic studies²⁾, a pathway for biosynthesis of the lactone (I) is pressumed as follows: a diterpenoid precursor such as labdadienol \rightarrow VIII \rightarrow VIII $\xrightarrow{5)}$ (X) \rightarrow IV \rightarrow II \rightarrow I.

Acknowledgement. We thank Professor R.A.Bell of McMaster University for accepting the authentic sample of compound (IX), and Dr. G.A.Ellestad of Laderle Laboratories for suggestions on fermentation of the strain.

REFERENCES

- G.A.Ellestad, R.H.Evans, M.P.Kunstmann, J.E.Lancaster, and G.O.Morton, J. <u>Am. Chem. Soc.</u>, <u>92</u>,5483 (1970).
- 2) H.Kakisawa, M.Sato, T.I.Ruo, and T.Hayashi, Chem. Comm., 802 (1973).
- 3) Y.Hayashi and T.Sakan, Proceeding of the 8th International Conference on Plant Growth Substances, in press.
- 4) R.A.Bell, M.G.Gravestock, and V.Y.Taguchi, <u>Can</u>. J. <u>Chem.</u>, <u>50</u>, 3749 (1972).
- 5) G.A.Ellestad, R.H.Evans, and M.P.Kunstmann, Tetrahedron Letters, 497 (1971).
- 6) The biological activity test was carried out by courtesy of Dr. Y.Hayashi at the Osaka City University, to whom we are grateful.
- 7) C.R.Enzell and R.Ryhage, <u>Arkiv</u>. <u>Kem.</u>, <u>23</u>, 367 (1964).